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Abstract

We explicitly determine the first occurrence indices of tempered
representations of metaplectic groups over a non-archimedean local
field of characteristic zero with odd residual characteristic.
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1 Introduction

In this paper we study the theta correspondence for the metaplectic odd-
orthogonal reductive dual pair and determine the first occurrence indices of
tempered representations of the metaplectic group over a non-archimedean
local field of characteristic zero. It is well known that a tempered represen-
tation can be obtained as a subrepresentation of the representation parabol-
ically induced from discrete series of general linear groups (or their two-fold
covers) and a discrete series of the group of same type and smaller rank.
Therefore, we provide a description of the first occurrence indices of tem-
pered representations in terms of the first occurrence indices of discrete series
of metaplectic groups, which have been obtained in our previous work ([13]).

In the last several years, a substantial progress has been made in study-
ing the local theta correspondence. In particular, the conservation relation,
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which states that the first occurrence indices of an irreducible admissible
representation of the rank n metaplectic group sum up to 2n, has recently
been proved by Sun and Zhu (and independently by Gan and Ichino in [3,
Theorem 9.3]).

This deep result reduces the investigation of the first occurrence indices
to determination of one of them. For tempered representations, we determine
the larger first occurrence index, i.e., the first occurrence index corresponding
to the orthogonal group of the space of larger dimension. To determine such
first occurrence index, we use methods for pushing down the theta lifts in the
same way as in [12] and [13], together with description of tempered represen-
tations of metaplectic groups arising from the work of Gan and Savin, and
some elementary properties of Jacquet modules of tempered representations.
Also, since our description is given in terms of the first occurrence indices of
discrete series representations, an important role is played by precise knowl-
edge of the structure of the first non-zero lifts of discrete series of metaplectic
groups.

An analogous problem for the symplectic even-orthogonal dual pair has
been addressed in [19]. However, in an exceptional case we also provide a
simple criterion for differentiating between tempered representations with
different first occurrence indices, in terms of their Jacquet modules.

We now describe the contents of the paper in more detail. In the next
section we set up notation and terminology, while in the third section we
recall standard facts on the theta correspondence and review basic techniques
for determining the first occurrence indices. In Section 4 we provide a precise
description of the first non-zero theta lifts of discrete series in the orthogonal
tower corresponding to the larger first occurrence index. Section 5 is devoted
to determination of the first occurrence indices of tempered representations
of metaplectic groups.

The author would like to thank Sime Ungar for help with English lan-
guage. The author would also like to thank the referee for a number of
corrections and very useful suggestions.

This work has been supported by Croatian Science Foundation under the
project 9364.



2 Notation

Let I stand for a non-archimedean local field of characteristic zero with odd
residual characteristic.

Let Sp(n) denote the metaplectic group of rank n, the unique non-trivial
two-fold central extension of the symplectic group Sp(n, F'). In other words,
we have

1 = pg — Sp(n) = Sp(n, F) — 1,
where puy = {1, —1}.
In this paper we are interested only in genuine representations of Sp(n)

(i.e., those which do not factor through ps). Thus, let Irr(Sp(n)) stand for the
set of isomorphism classes of irreducible admissible genuine representations

of the group Sp(n). Furthermore, let S(Sp(n)) denote the Grothendieck
group of the category of all admissible genuine finite length representations

of Sp(n) and we define S = €p,,~, S(Sp(n)).

Let V; be an anisotropic quadratic space over F of odd dimension (recall
that its dimension can only be 1 or 3). To obtain the odd orthogonal tower,
for each non-negative integer r let V,. be the orthogonal direct sum of V) with
r hyperbolic planes. We assume that V. comes equipped with a fixed Witt
decomposition V;, = V! @ Vy @ V” and with bases {v],...,v.} for V! and
{vf, ... v} for V' satisfying (vj,v}) = (v/,v]) = 0 and (v, v}) = d;;. The
corresponding orthogonal group will be denoted by O(V,.). Set m, = %dimVT.

To a fixed quadratic character x of F'* one can attach two odd orthogonal
towers, one with dimVjy = 1 (4 -tower) and the other with dim Vp = 3 (—-
tower), as in Chapter V of [10]. The corresponding orthogonal groups will
be denoted by O(V.*) and O(V,7).

Similarly as before, let Irr(O(V}.)) denote the set of isomorphism classes
of irreducible admissible representations of the orthogonal group O(V}.).

—_——

Let GL(n, F) denote the double cover of the general linear group GL(n, F'),
where the multiplication is given by (g1, €1)(g2, €2) = (9192, €1€2(detgy, detgs) ).
Here €; € ps, i = 1,2, and (-, -)r denotes the Hilbert symbol of the field F'.

In what follows, we fix a non-trivial additive character ¢ of F'. We denote

by x, the genuine character of GL(n, F') given by xy(g, €) = ey(detyg, w%)_l,

where v denotes the Weil index, and for a € F* we have ¢,(z) = ¢ (az).
For V' = V, we denote by xy the quadratic character of F* given by

xv(z) = (z,(=1)*det(V))r, where det(V) is the determinant of the matrix



of the bilinear form on V and k = dimV - (dimV — 1)/2. We note that
this character is, in fact, independent of r, by [9, page 240]. To simplify
the notation, the character of GL(n, F’) given by g — xv(det g) will also be
denoted by xy. Furthermore, we define the character yv, of GL(n, F') by
Xv(g,€) = xv(9)xu(g,€). We write o = be and note that [10, Lemma 4.1]
implies that « is a quadratic character of GL(n, F).

We define R9" = &, R(GL(n, F))gen, where R(GL(n, F'))g4en denotes the
Grothendieck group of the category of all admissible genuine finite length
representations of GL(n, F'). Also, we denote by Irr(GL(n, F')) the set of
isomorphism classes of irreducible admissible representations of GL(n, F)

and by Irr(GL(n, F')) the set of isomorphism classes of irreducible admissible

representations of GL(n, F'). Using the genuine character x,, in the same
way as in [4, Section 2| or in [8, Section 4], one obtains a bijection between
Irr(GL(n, F)) and Irr(GL(n, F)) via p — xpp = Xy @ p.

Throughout the paper, v stands for the character of GL(n, F') defined
by |det|r. If p is an irreducible cuspidal representation of GL(n,, F') (this

defines n,), or such genuine representation of GL(n,, F'), we call the set
A = {vp, v p, ..., 1 p} a segment, where a € R and k € Z¢. In the
sequel, we abbreviate {v%p, v**1p, ..., 12 p} to [V, v*T*p]. We denote by
§(A) the unique irreducible quotient of v%p x v+ p x -+ x v*"*p. The rep-
resentation §(A) is an essentially square-integrable representation attached
to the segment A. If p is a genuine representation, then so is §(A) (by [8,
Proposition 4.2]).

To shorten the notation, for a non-negative half integer x and an irre-
ducible cuspidal representation p of GL(n,, F) we denote by d(z,p)* the
induced representation

S([v™"p,vp]) x 8([v~"p,v"p]) X -+ x 6([v""p,v"p]),

where 0([v"p, " p|) appears k times. Also, the induced representation 1”1 px X
V1lpx X -+ X V¥1px, where v*1px appears k times, will be denoted by
(V%1 px)*.

We define d(x, xyp)* and (v"xy1px)* in the completely analogous way.
It follows from [25, Theorem 9.7] that all these induced representations are
irreducible. Also, all these representations are non-degenerate in the sense
of [2, page 455].



For an ordered partition s = (ny, no,...,n;) of some m < n, we denote by
P, the standard parabolic subgroup of Sp(n, F') (consisting of block upper-
triangular matrices) whose Levi subgroup M; equals GL(ny, F') x GL(ng, F') X
-+ X GL(n;, F) x Sp(n—m, F'). Then the standard parabolic subgroup P, of

e~

Sp(n) is the preimage of Ps in Sp(n) and its Levi subgroup M, differs from the

product GL(ny, F') x GL(ng, F') X - - - X GL(n;, F') x Sp(n —m, F') by a finite
subgroup. This enables us to write every irreducible genuine representation
of My in the form m; ®my®- - -®m;®c where all representations w1, mo, ..., 7, 0

are genuine at the same time. We will denote the representation of Sp(n)
parabolically induced from 7 @ mo ® -+ @ m; @ 0 by m X Mg X -+ X T; X
o. If s = (k), for some 0 < k < n, we denote P, briefly by P, and P
briefly by ﬁk The standard parabolic subgroups of O(V},) have an analogous
description as those of Sp(n, F'). The normalized Jacquet module of a smooth

—_——

representation o of Sp(n) with respect to the standard parabolic subgroup
P will be denoted by Rp (o). It can be easily checked that for an irreducible

—_——

representation o of Sp(n), Rp (o) is a genuine representation of M, and,
as such, can be interpreted as an element of R9" ® S, the Grothendieck
group of the category of all admissible genuine finite length representations

of Levi subgroups of the maximal parabolic subgroups of Sp(n), for all n.
The normalized Jacquet module of a smooth representation o of O(V,) with
respect to the standard parabolic subgroup @ will be denoted by R, (o). For
a cuspidal representation p of Irr(GL(n,, F')) and a genuine representation

o of Sp(n), we write Rz (c0)(xyp) for the maximal x,p-isotypic quotient of
p

Rs (o). It is a maximal direct summand of Rz (o) on which GL(n,, F)
np np

acts by xyp. Also, let Rq, (7)(p) denote the maximal p-isotypic quotient of
Rq,, (1) for representation 7 of O(V;.).

P

Let o € Irr(Sp(n)). We define u*(0) € R%" ® S by

i () = D 55.(Rp, ()

(s.s. denotes the semisimplification), and extend pu* linearly to the whole
of §. In the same way p* can be defined for irreducible representations of
classical groups. If p*(o) contains a constituent of the form 7 ® o', we write
pr(o) zm@o'.



In the following theorem we recall the metaplectic version of the structure
formula (obtained in [8]), due to Tadi¢ in the classical group case ([22]).

Theorem 2.1. Let p € RI™ be an irreducible cuspidal representation, and
a,b € R be such that a +b € Z>o. Let o be an admissible genuine rep-

resentation of finite length of Sp(n). Let p*(o) = Y, m® o'. Then we
have:

WG p ) o) = D7 303 6l vag]) x ([0 piel) x

i=—a—1 j=i w0’

® ([ p, v p)) 1 o’
where p denotes the contragredient of p. We omit 6([v"p, vp]) if x > y.

Also, we recall that by the Mceeglin-Tadi¢ classification, which is given
in [14, 16], several invariants are attached to a discrete series representation
o of an orthogonal group. One of them is the partial cuspidal support of
o, which we denote by o,.. The other invariant attached to o is its Jordan
block, denotes by Jord(o), and defined as the set of all pairs (a, p) where a
is a positive integer and p € Irr(GL(n,, F')) is a cuspidal self-contragredient
representation such that the following two conditions are satisfied:

a_l . . . .
1. %5~ — 8,0, 18 an integer, for the unique non-negative s,, . such that

vo0ose p X 0, reduces (such s, . exists by [20]),

2. the induced representation 5([1/_%1 p VT p]) X o is irreducible.

For a cuspidal self-contragredient representation p € Irr(GL(n,, F)), we set
Jord,(0) ={a € Z: (a,p) € Jord(o)}.

We emphasize that the Maeglin-Tadi¢ classification now holds uncondi-
tionally, since the natural hypothesis on which this classification is based now
follows from the results of [1] and is proved in [15, Théoreme 3.1.1].

3 Preliminary results on theta correspondence

In this section we review some results about the theta correspondence which
will be used later.

The pair (Sp(n, F'),O(V;)) is a reductive dual pair in Sp(n - dimV;, F)
and the theta correspondence relates the representations of the metaplectic
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group Sp(n) and those of the orthogonal group O(V,.). Define n; = n-dimV;,
and let w,, , denote the pull-back of the Weil representation w,,, 4 of the group

Sp(ny), restricted to the dual pair Sp(n) x O(V;.) (as in [10]).

For o € Irr(Sp(n)), we let ©(o,r) denote the smooth representation of
O(V,.) given as the big theta lift of o to the r-th level of the orthogonal
tower. The big theta lift ©(o, ) is the maximal o-isotypic quotient of wy, .
Specially, we write ©7 (o, r) for the big theta lift of o to the r-th level of the
+ -orthogonal tower and ©~ (o, r) for the big theta lift of o to the r-th level
of the — -orthogonal tower,

Similarly, for 7 € Irr(O(V}.)) we denote by O(7, n) the big theta lift of the

representation 7, which is a smooth genuine representation of Sp(n).

In the following theorem we summarize important results on the theta
correspondence, proved in [10], [17], [21] and [24]. We note that the second
part of the theorem, which is on the Howe duality, is now proved for any
residual characteristic by Gan and Takeda ([6]).

Theorem 3.1. For o € Irr(Sp(n)) there is a non-negative integer r such
that ©(o,r) # 0. The smallest such r is called the first occurrence index of
o in the orthogonal tower and will be denoted by r(o). Also, ©(a,1") # 0 for
r' >r. Wewriter™ (o) for the first occurrence index of o in the + -orthogonal
tower and r~ (o) for the first occurrence index of o in the — -orthogonal tower.

The first occurrence indices satisfy the following equality, called the con-
servation relation:

r* (o) +7r (o) = 2n.

The representation ©(o,r) is either zero or it has a unique irreducible
quotient. We denote this unique irreducible quotient by 0(o,r). Also, we
write 0% (o,r) for this irreducible quotient in the + -orthogonal tower and
0~ (o,1) for this irreducible quotient in the — -orthogonal tower.

If o1 and oy are irreducible genuine representations of Sp(n) such that
O(o1,7) # 0 and 0(o1,7) = 0(09, 1), then o1 = 0.

For 7 € Irr(O(V;)), the representation ©(T,n) is either zero or it has
a unique irreducible quotient, which we denote by 6(t,n). If 11 and 1o are
irreducible representations of O(V,) such that 6(m,n) # 0 and 6(m,n) =
Q(Tg,n), then T1 = T2.

In the rest of this section we fix an odd orthogonal tower and denote



by xv. the character of GL(n, F') related to this orthogonal tower and to
character 1.

Now we state a criterion ([12, Proposition 5.1] and [13, Corollary 6.4]) for
pushing down the lifts of irreducible representations.

Lemma 3.2. Suppose that o is an irreducible genuine representation of

Sp(n). Then O(o,r) # 0 implies Rp, (O(co,r + 1)) (v~ (177D 1) £ 0.
Furthermore, if prvl(o)(V*(m*“*”*l)xwwlpx) = 0, then O(o,r) # 0 if
and only if Rp,(©(o,r + 1)) (v~ mr+17n=D1p) #£ 0.
Also, if o is a discrete series representation of Sp(n) and ©(o,r) # 0, then
0(c,r+1) is a subrepresentation of the induced representation v~ (177" py

O(o,r).

We take a moment to state several results which will be frequently used
in the paper. The first one is ([13, Proposition 3.7]).

Proposition 3.3. Suppose that an irreducible representation o € Irr(Sp(n))
can be written as an irreducible subrepresentation of the induced representa-
tion §([Vxv.yp, VXvup]) X o', where p is an irreducible cuspidal representa-

tion of GL(n,, F'), o' € Irr(Sp(n')) andb—a > 0. If©(o,7) # 0 and (a, p) #
(m,—n, 1px), then there exists an irreducible representation T of some O(V,.)
such that 0(a, 1) is a subrepresentation of §([v%p, v°p]) x 7. Furthermore, sup-
pose that if u*(o) contains the representation §([Vxv.yp, Vo Xvep]) ® o, for

some irreducible genuine representation o” of Sp(n'), then o” = o'. Then
O(o,r) is a subrepresentation of

S([vp, V%)) x 0(c’,r —n + ).

We note that there is an analogous result for irreducible admissible rep-
resentations of odd orthogonal groups ([13, Proposition 3.8]).

The following two propositions play an important role in determination
of theta lifts of tempered representations and can be proved in an analogous
way as [19, Theorem 3.8] and [19, Theorem 3.9].

Proposition 3.4. Let o denote an irreducible genuine representation of

Sp(n). If u*(o) > (Wxvelex)* @ o’ for some irreducible representation
o' and ©(o,r) # 0 for & # m, —n, then p*(0(o,7)) > (V*1px)* @7 for some
irreducible representation w. Also, if o is a subrepresentation of the induced
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representation 6(z, xv.yp)* x o', for some o’ € Irr(Sp(n')) such that p*(co) >
§(z, Xvyp)*®@0” leads to 0" = o', then O(a,r) # 0 and (v, p) # (m,—n, 1px)
imply that 0(o,r) is a subrepresentation of §(x, p)* x 0(c’,r —n +n').

Proposition 3.5. Let 7 denote an irreducible representation of O(V,). If
(1) > (V®1px)* @ 7' for some irreducible representation 7' and ©(1,n) # 0
forx #£n—m, +1, then p*(0(1,7)) > (Vxvplpx)* @7 for some irreducible
representation 7. Also, if T is a subrepresentation of the induced representa-
tion §(x, p)k x 7', for some 7' € Irr(O(V,+)) such that p*(1) > (z, p)* @ 7"
implies 7" = 7', then ©(1,n) # 0 and (x,p) # (n — m, + 1, 1px) imply that
O(t,r) is a subrepresentation of 6(z, xvyp)® x 0(t/,n —r+1').

4 Theta lifts of discrete series

In this section we discuss the theta lifts of discrete series representations

e~

of metaplectic groups. Set ¢, = 0 and t— = 1 and let ¢ € Irr(Sp(n))
denote a discrete series representation. By [4, Theorem 1.1], there is a unique
e € {4, —} such that ©°(o,n —t.) # 0. We will determine the structure of
the first non-zero theta lift of the representation o in the —e-tower. Since for
strongly positive o the structure of 0~¢(o,r~¢(¢)) is given in Section 4 of [13],
we assume that o is a non-strongly positive discrete series. In what follows,
we denote by xy the quadratic character of GL(n, F') related to —e-tower
and define v, in the same way as before.

It has been proved in Section 6 of [13] that for each o there is an or-
dered s-tuple S = (0¢,01,...,0_1) of discrete series representations, o; €

Irr(Sp(n;)), where 051 = ¢ and oy is strongly positive, such that the follow-
ing properties hold:

(i) for every ¢ € {1,2,...,s — 1} there exist a self-contragredient cuspidal
representations p; € Irr(GL(m;, F')) and non-negative half-integers a;, b;
with b;—a; € Z~¢ and a;—c € Z for all 2c—1 € Jord,, (0 (01, ni—1—t.)),
such that o; is a subrepresentation of &([v=% xv.pi, VPixvepi]) X 0i1
and Jord,, (0(o;—1,n;—1 —t.)) N [2a; + 1,2b; + 1] = 0 (we note that this
also gives Ry (0i-1)(v"xvypi) = 0 for a; <z < by);

(ii) if p; = p; for i < j, then p; Z p forl e {i+1,i+2,...,j};

(iil) if p; = pir1 then a; < a;iq;



(iv) if there is some i € {1,2,...,s — 1} such that p; = 1px, then p; = 1px.

We note that ©¢(o;,n; —t.) # 0 for alli € {0,1,...,s—1}. Also, if u*(o;)
contains some irreducible constituent of the form §([v=% xv.pi, VY Xvypi]) @
o', then o/ = o,_;.

Let us denote by U(co) the set of all such ordered s-tuples of discrete
series representations. To each S € U(o) we attach a non-negative half-
integer min(.S) which is the minimal x such that oy can be written as the
unique irreducible subrepresentation of the induced representation of the
form §([v*xvulpx, VWxvyplex]) X og, y > x, for a strongly positive discrete
series oy, or zero if such x does not exist.

We call an ordered s-tuple S € U(¢) minimal if min(S) < min(S") for
every S’ € U(o).

In what follows, we fix a minimal ordered s-tuple S = (0g,071,...,05_1)
and write o; < ([ "% xvypi, YiXvypi]) X i1 in the same way as in (i)
above. Set m = n; —t. — r(01). We denote by k the largest integer j,
1 < j<s—1,such that (a;,p;) = (m—+i—3,1px) fori=1,2,..., 5. If there
is no such j, we set k = 0. If &k > 0, we denote by [ the largest integer j,
1 < j <k, such that Ry (0)(v*xvylex) = 0 for i = 1,2,...,j. If there is
no such j, or k =0, we set [ = 0.

By [13, Proposition 6.2], we have

r(o)=n—t_.+m+1+1 (1)

To describe the representation 6~¢(o,r “(c)) we need the following two
lemmas. The first one presents an important part of Moeglin-Tadi¢ classifi-
cation of discrete series and its proof can be found in Sections 9 and 10 of
[16] and in [18, Theorem 2.1].

Lemma 4.1. Suppose that 7 is a discrete series of an orthogonal group and
p € Ir(GLy,, F) is a self-contragredient cuspidal representation. Let a and
b denote non-negative half integers such that b —a € Z~o and a — ¢ € Z for
all 2¢+1 € Jord,(m). Also, suppose Jord,(m)N[2a+1,2b+ 1] = 0. Then the
induced representation

S([v=p,’pl)

contains two irreducible subrepresentations which are mon-isomorphic and
square-integrable.
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Lemma 4.2. Let m denote a discrete series of an orthogonal group and
let p € Ir(GL,,, I, p' € [rr(Gan,,F) denote self-contragredient cuspi-
dal representations. Let a and b stand for non-negative half integers such
that b —a € Z~o and a — ¢ € Z for all 2¢ + 1 € Jord,(m). Also, suppose
Jord,(m)N[2a+1,2b+ 1] = 0. Let x denote a non-negative half integer such
that x —c € Z for all 2c+1 € Jord, () and let T be an irreducible (tempered)
subrepresentation of
o([v*p v7p]) x .

If p = p', we additionally assume x & [a,b]. Then every irreducible subrepre-
sentation of §([v=%p,v°p]) x T is an irreducible tempered subrepresentation of
S([v=p',vp']) x ©" for some irreducible square-integrable subrepresentation
7 of 6([v=p, °p]) x .

Proof. Let m denote an irreducible subrepresentation of &([v=%p, v°p]) x 7.
The assumption of the lemma gives

m = ([ p, )} 8([v ", v p ) e 22 ([ !, v p 1) X 6([vp, VP p]) .

It can be easily seen, using the structural formula for p*, that the irreducible
representation §([v=p, v%p']) @ §([v~%p, v’p]) ® m appears with multiplicity
four in the Jacquet module of §([v=%p’, v*p']) x 6([v=%p, °p]) x 7 with respect
to the appropriate parabolic subgroup.

We will denote non-isomorphic irreducible subrepresentations of the in-
duced representation §([v~%p, v°p]) x7 by 7 and 73. Obviously, §([v=2p', vp']) x
7; is a subrepresentation of §([v=%p',v%p']) x d([v=%p,’p]) x 7 for i = 2,3.
Also, §([v="p',v*p']) x my reduces if and only if 6([v="p/, v*p']) X 73 reduces.

If x is an integer, set s; = (2o + 1) - n,, otherwise set s; = 2z - n,. Also,
set s = (a+b+1)-n, and let s = (51, S2).

If the induced representation §([v~*p’, v*p']) X 7o is irreducible, then the
irreducible representation §([v=p,v%p']) @ §([v~%p, v°p]) @ ™ appears with
multiplicity two in the Jacquet modules of both §([v~*p',v"p']) x mo and
([v="p',v"p']) x w3 with respect to the standard parabolic subgroup Q.

If the induced representation §([v=*p’, v*p']) x 7y reduces, both represen-
tations 0([v=*p/, v*p']) x mp and §([v~*p',v*p']) X 73 are direct sums of two
tempered irreducible subrepresentations and Jacquet modules with respect
to to the standard parabolic subgroup ), of each of these subrepresentations
contains §([v=2p, v*p']) @ 6([v~%, v°p]) ® 7 with multiplicity one.
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In any case, there is an ¢ € {2,3} such that m is an irreducible subrepre-
sentation of §([v="p',v"p']) X m; and m; is obviously tempered. This proves
the lemma. ]

Now we are ready to provide our description of the first non-zero theta
lift of discrete series o in the —e-tower. We note that the first statement of
the following theorem is subsumed under [5, Proposition 3.1].

Theorem 4.3. Let o € Irr(Sp(n)) be a discrete series representation and
let € denote + or — such that ©°(T,n —t.) # 0, where ty =0 and t_ = 1.
The first non-zero theta lift 0=(o,7=(0)) in the —e-tower is a tempered
representation. Let xy denote the quadratic character related to —e-tower
and let xv.y = XvXy- For a minimal ordered s-tuple S = (0¢,01,...,05-1),

o; € Irr(Sp(n;)) and o; = §([v™% xv.ypi, V2iXvepi]) Xoi_1, we denote by k the
largest integer j, 1 < j < s—1, such that (a;, p;) = (n1—te—r(01)+i—3, 1px)
fori=1,2,...,7. If there is no such j, we set k = 0. If k > 0, we denote
by 1 the largest integer j, 1 < j < k, such that Ry (0)(v*xvylex) = 0
fori =1,2,...,9. If there is no such j, or k = 0, we set [ = 0. Then
0=(o,77%(0)) is a discrete series representation if and only if k = | and
by, > ag + 1, Zf]{?>0

Proof. Several possibilities will be considered separately. Let us first discuss
the case £ = 0. In this case, it follows directly from the result obtained
in Section 4 of [13] that Jord,, (6= (oo, 7 (00))) N [2a; + 1,2b; + 1] = ( for
1=1,2,...,5s—1

Using the description of the first occurrence indices given by (1) and
Proposition 3.3, we deduce that 6=¢(o;,77¢(0;)) is an irreducible subrepre-
sentation of

S([v™ " pss " pi]) % 07 (041,77 (01))

foralli =1,2,...,s—1. Now the description of Jordan blocks of an induced
representation, given in [16, Proposition 2.1], enables us to use Lemma 4.1
to conclude that the representation 0(o;, 7 “(0;)) is a discrete series repre-
sentation for all ¢ = 1,2,...,s — 1 and Jord,, (0~ (os_1, 7 “(0s-1))) N [2a; +
1,2b; + 1] =0 fori=2,3,...,s — 1.

Now we consider the case & > 0. If I = 0, then 8 (0,77 “(01)) is an
irreducible subrepresentation of

S([™ e, V" 1 px]) X 0700, 7 (00)) (2)
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and 2a;+1 € Jord, , (07(09,77(00)). It can be easily seen that 6=(o1,77(01))
is not a discrete series representation. Let us assume that it is a non-tempered
representation. Then there is an irreducible constituent of p*(60=¢(oq, 7 %(01)))
of the form &([v=p, v¥p]) ® 7, such that —c+d < 0. Since §=(cq, 7 (09)) is

a discrete series representation, applying the formula for u* to (2), we obtain

p = 1px and ¢ > a;. Using Proposition 3.8 of [13], we get a contradic-
tion with the square-integrability of oy. Thus, 6=¢(oq,7“(01)) is a tempered
representation and it is a subrepresentation of

(S([Vﬁal 1F>< s v 1F><]) X O'/,
where ¢’ is a discrete series subquotient of the induced representation
5({Va1+11F><,l/b11F><]) x 0~ (O'(), (0'0>>.

We note that Jord(c’) = Jord(0= (oo, “(00))) \ {(2a1 + 1, 1px)} U {(2b; +
1,1px)}. Also, [23, Theorem 8.2] can be used to prove that o’ is a subrepre-
sentation of (¥ 1 px, V21 1px]) ¥ 07(ag,77¢(00)), and that it is the unique
discrete series subquotient of this induced representation.

Proposition 3.3 and (1) show that 6=<(¢;,7"“(0;)) is an irreducible sub-
representation of

§([v= pi, " pi]) % 0~ (071,77 (04-1))

forall i =2,...,s — 1. Furthermore, Lemma 4.2 can be used to deduce that
there is an ordered (s — 1)-tuple of discrete series (07,05, ..., 0% ;) such that
o} = ¢’ and 0 is an irreducible subrepresentation of §([v=% p;, 1% p;]) X o’ _,
with a; such that a; — ¢ € Z for all ¢ € Jord,,(0}_,) and Jordpj(a )N
2a; +1,2b; + 1] =0 forall j =2,...,s — 1 and, for every t = 2,...,s5 — 1
0=<(o;,77¢(0;)) is an irreducible tempered subrepresentation of

9

(5([Vﬁa11F><,l/a11F><]) X O';_l.

In the rest of the proof we may assume [ > 0. Using the results from
Section 4 of [13], we deduce Jord; , (07(c0o,7~(00))) N [2a1 + 1,201 + ] =
2a;+ 1 and Jord,, (0~(co, 7~ (00))) N [2a; +1,2b;+ 1] =0 fori =2,...,s—1.
We have

9_6(0'1,7”_6(0'1)) — 5([V_a1]_p><,l/b11F><D X l/_al_llpx X 0_6(0'0,7"_6(0'0))
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and 0¢(o1,77%(01)) is obviously contained in the kernel of the intertwining
operator

5([V_a11Fx,Vb11Fx]) X V_al_llpx X 9_6(0'0,7"_6(0'(])) —

I/_al_l]_Fx X (S([V_allpx,l/bllpx]) X 9_6(0'0,7“_6(0'0)),
i.e., 0~¢(o1,7 %(01)) is a subrepresentation of the induced representation
(5([V_a1_1]_p>< , l/bllpx]) X 0_6(0'0, 7‘_6(0'0)).

If by > a; + 1, Lemma 4.1 implies that 6=“(o1,77(01)) is a discrete series
representation, and otherwise it is tempered. For i < k, obviously b; > a;+1.
Repeating the same procedure, we obtain that, for i <1, 0=¢(o;, 7~ (0;)) is
a discrete series subrepresentation of §([v =% 1 px, 11 px]) x0~ (031, 7 (03_1)).
Observe that this gives (2(a; + 1) + 1, 1px) € Jord(0~<(o;,77(0;))).

If £k =1and b, > a; + 1, in the same way as before we deduce that
0=<(0;,r~(0;)) is a discrete series subrepresentation of §([v=% p;, % p;])
0=(0j_1,7 (0j_1)) forall j =k+1,k+2,...,s—1. If k =l and b, = a;+1,
0=<(op,r~“(0p)) is a tempered subrepresentation of &([v =% 1px, v 1px]) X
0~ (0k—1,7"(0k-1)). An inductive procedure, based on Proposition 3.3 and
Lemma 4.2, shows that, for j =k+ 1,k +2,...,5s =1, 07 (0,77 (0;)) is a
tempered subrepresentation of 0([v~"%1px, % 1px]) x o, where each o/ is a
discrete series subrepresentation of §([v=% p;, 1% p;]) 3 0)_; with a; — ¢ € Z
for all 2c 41 € Jord,, (0_;) and Jord,, (o ;) N [2a; 4 1,2b; + 1] = 0.

It remains to consider the case k > . Now 0 (041,77 (041)) is a sub-
representation of §([v =%+ 1 px, P11 px])x0~(0y, 77¢(07)). Since aj41 = a;+1
and (2(a;+1)+1, 1px) € Jord(0=(oy, 7 (7)), it follows that 0=¢(oy41, 7 (0741))
is not a discrete series. In the same way as in the case £k > [ = 0, we
deduce that 0¢(oy11,7 “(0;41)) is a tempered subrepresentation of the in-
duced representation 0 ([~ "+ 1px, %+ 1px]) x o’ for a unique discrete series
subquotient ¢’ of §([v¥+1 1 px, VP11 px]) x 07(0y,77¢(07)). Using Proposi-
tion 3.3 and Lemma 4.2 we obtain that 6=“(o;,77(0;)) is tempered for all
j=1+11+2 ...,5s—1 and the theorem is proven. O]

In the rest of this section, we denote by xy+ the quadratic character of
GL(n, F) attached to the e-tower in the same way as in Section 2.
Directly from the proof of the previous theorem, we obtain
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Corollary 4.4. Let y = (o) —n+ 1 +t_.. If 67(0,r7(0)) is not a
discrete series representation, then (2-y—1, xyxv/1px) € Jord(0(o,n—t.)).
If 0=<(o,77%(0)) is a discrete series representation, then (2 -y — 1,1px) €
Jord(0=<(o,r(0)).

We will also need the following result regarding Jacquet modules of dis-
crete series and their theta lifts:

Lemma 4.5. Suppose (2z + 1, xyxvp) & Jord(§(o,n — t.)) for a cuspidal
self-contragredient representation p € Irr(GL(n,, F')). Then Rp (0)(Vxvyp) =
0.

Proof. By [16, Lemma 3.6] we have Rp, (0°(0,n — t.))(v"xvxvp) = 0. If
(2,p) # (3, XvXv'1px), Proposition 3.5 directly implies Rz () (v*xv.pp) = 0.
It remains to consider the case (z, p) = (%, XvXv'1rx). Suppose, contrary

to our assumption, that RE(U)(V%XW/,lFx) # 0. Now [13, Theorem 6.1] and
[12, Theorem 6.1] can be used to deduce (2z + 1,p) € Jord(6°(o,n — t.)),
which is impossible. This proves the lemma. O]

5 First occurrence indices of tempered rep-
resentations

Let 7 denote an irreducible tempered representation of the metaplectic group

Sp(n). As before, we set t; = 0 and ¢t_ = 1 and let € denote an element
of {+,—} such that ©°(t,n —t.) # 0. As in Section 2, we denote by xy
the quadratic character of GL(n, F) related to the —e-tower and by yy- the
quadratic character of GL(n, F) related to the e-tower.

Using well-known results for classical groups (i.e., Section 2 of [19]), to-
gether with [4, Theorem 1.3] and Proposition 3.5, we obtain that there ex-
ists an ordered t-tuple (79, 71,...,7_1) of tempered representations, 7; €

Irr(Sp(n;)), such that 7 = 7,1, 79 is a discrete series representation and
for i € {1,2,...,t — 1} there is an irreducible cuspidal representation p; of
GL(n,,, F'), a non-negative half-integer z; and a positive integer m; such that

T = 0(Zi, Xvppi)™ X Tiz1

and p*(7;_1) does not contain an irreducible constituent of the form 6(x;, xv,u0:)®
.
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We note that the last fact implies that if x*(7;) contains an irreducible
constituent of the form o0(z;, xv.pp:)™ @ 7/, then 7/ = 7,_4.

Proposition 3.3 implies ©¢(7;,n; —t.) # 0 for i =0,1,...,¢t— 1.

Define y = r~“(70) — no + 3 + t_.. Observe that 6=(7o,7 (7o) + 1) is a
subrepresentation of v Y1px X 07 ¢(19, 7 (70)).

The following lemma follows directly from [7] and Section 8 of [4] (Mackey
theory can be used to extend Goldberg’s results to the non-connected case,
as in [11, 16)):

Lemma 5.1. The induced representation 6(x, xvup)™ X T is a direct sum
of tempered representations. It contains at most two non-isomorphic irre-
ducible subquotients and it contains exactly two non-isomorphic irreducible
subquotients if and only if the representation d(x, xyxvp)™ X 0(10,no — t.)
reduces.

The following theorem is the main result of this paper:

Theorem 5.2. Let 7 € Irr(Sp(n)) be a tempered representation and let
e € {+,—} denote + or — such that ©°(t,n —t.) # 0, where t; = 0 and
t_ = 1. Denote by xv the quadratic character related to —e-tower and let
Xv = XvX¢- Let (17o,71,...,7—1) denote an ordered t-tuple of tempered

representations, 7, € Irr(Sp(n;)), such that T = 17,1, To is a discrete series
and for i € {1,2,...,t — 1} we have 7; = 6(x;, Xv,ppi)™ X Ti_1 where p; €
Irr(GL(n,,, F)) is a cuspidal representation, x; is a non-negative half-integer,
and m; 1s a positive integer such that p*(1;_1) does not contain an irreducible
constituent of the form 6(x;, xv,ppi) @ m. Set y =1"(70) — no + 5 + t_.

If p*(7) does not contain an irreducible constituent of the form o0(y —
L xvylp<) @m, then (1) = n —ng 4+ r(19) and r~<(7) =n —ng +r~(10).

If some irreducible constituent of the form 6(y — 1, xvylpx) ® T appears
in w* (1), let us denote by m the largest integer such that p*(7) contains an
irreducible constituent of the form 6(y — 1, xvulpx)™ @ m. Then there is an
i€{1,2,...,t — 1} such that (x;, pi,m;) = (y — 1, 1px,m). We can assume
1 = 1. There are two possibilities:

(1) Suppose that the induced representation §(y—1, xv,plpx )" X7y is a direct
sum of mutually isomorphic tempered representations. Then r¢ (1) =
n—ng+r(rn) and r (1) =n—ng+1r (7).

(11) Suppose that the induced representation §(y—1, xv,plpx )™ Xy is a direct
sum of copies of two non-isomorphic tempered representations. If p* ()

16



contains an irreducible constituent of the form (V9= xvylpx)*™ ® ,
then r<(17) =n —nog +71(10) and r=<(1) =n—no+r(79). Otherwise,
r’(t)=n—ng+7r(r) — 1L and r~<(1) =n —mng+r (1) + 1.

We divide the proof of Theorem 5.2 in a sequence of propositions. The
conservation relation shows that it is enough to determine one of the first
occurrence indices. In each case, we determine the larger one.

Proposition 5.3. Suppose that p*(7) does not contain an irreducible con-
stituent of the form 6(y — 1, xvylpx) @ m. Then r~=<(1;) = n; — ng +1r-(79)
fori=1,2,...,t—1.

Proof. The proof is similar to that of [13, Theorem 4.1]. Let us first consider
the case i = 1 and let z be such that © (7, z) # 0. Proposition 3.3 gives

0711, 2) = §(zs, p))™ % 07 (10, 2 — N1 + ng).

If z # ny—ne+r—(79), Lemma 3.2 implies (7, z—nq+ng) < pr— st ] Ly
0=(10,z—n1+no—1) and, if z > ny —ng+7r"(70) +1, 6=(10, 2 —n1+np) —
prm st L x pmmER e Ly i 0=(10,2 —nq +ng — 2).

If (z1,p1) # (—(mi — 2+ 2 —t_),1px) or 2 = ny —ng +7r7(10) + 1 we
have

a4l PO
5($1,p1)m1 X M t_€1F>< S A t_elpx X 5((131,p1)m1

(note that (z1,p1) # (y — 1,1px) by the assumption of the proposition).
Otherwise, we have

9_6(7—1, Z) — 5(1'1, ]_Fx)ml X V_$1_11F>< Xyt 1F>< X 0_6(7—0,2 — Ny +ng— 2)

Assume that 6~(7y, ) is contained in the kernel of the intertwining operator

5(331, 1F>< )m1 X I/_xl_llpx X I/_xllpx X 9_6(7_0,2 —niy+ng— 2) —

v e X 8wy, 1k )™ X v e ¥ 07 (19, 2 — g + g — 2).
Then 6~¢(1y, z) is a subrepresentation of
([ M, v 1px]) X 0(21, Lpx )™ X v 1 px ¥ 07(79, 2 — ny +ng — 2),
which is isomorphic to

V_zl]_Fx X 5([V_I1_11F><,l/x1]_p><]) X 5(1’1, ]_Fx)ml_l X 9_6(7'0,2—711 + Ny —2),
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and Proposition 3.5 can be used to obtain a contradiction with the tempered-
ness of 7.

Consequently, Rp, (©7¢(1,2))(v™ T2 t=1px) # 0 and, since n; — z +
$ —t_. <0, we obtain © (7,2 — 1) # 0.

Repeating the same procedure, we get © (71, ny —ng+r"(79)) # 0. Also,
0=<(11,n; —no+1r"(70)) is a subrepresentation of §(z;, p;)™ X0~ (19,7~ (70)).
By Theorem 4.3, this representation is tempered, and the structural formula
for u* gives Rp, (©07¢(7y, 2)) (v ¥ 1px) = 0. Consequently, r=¢(1y) = ny; —
no + (7).

Let us now assume that r¢(7;) = n; — ng + r~“(7p) for all i < j. Since
7; is tempered, this also gives 07¢(7;, 7 + 1) < v~ 1701 5 07(7;, 1)
for r > r7¢(7;). Now it can be proved that r~(7;) equals n; — ng + (1)
following the same lines as in the case j = 1.

This ends the proof. O

In the rest of this section we assume that an irreducible constituent of
the form 0(y — 1, xvplpx) @ m appears in p*(7), and we denote by m the
largest integer such that p*(7) contains an irreducible constituent of the
form §(y — 1, xvplrx)™ @ m. We may, and we will, assume (21, p1,m1) =
(y — 1, 1px, m).

Proposition 5.4. Suppose that the induced representation §(y—1, xv.ylpx )™ X
To 4s a direct sum of mutually isomorphic tempered representations. Then
r=(m) =n1 —ng+ 1 (70).

Proof. In this case, 6(y — 1, xyxv/1rx)™ % 0°(10,n9 — t¢) is irreducible. Let
m’ denote the largest integer such that p*(7y) contains an irreducible con-
stituent of the form (¥ xy.41px)™ ®@n. Propositions 3.4 and 3.5 show that
1 (0=¢(70,7¢(70))) contains an irreducible constituent of the form (¥~ )™ ®
71 and does not contain an irreducible constituent of the form (v¥ =11 )™ *'®
7. Furthermore, the structural formula directly implies that *(71) contains
an irreducible constituent of the form (1Y~ xy.,1px )" @ 7.

Following the same steps as in the proof of the previous proposition, we
deduce r7(1) € {n1 —ng +r"(7),n1 —ng + (1) + 1}. Proposition 3.4
shows that

,u*(efe(ﬁ,nl — Ny + 7"76(7'0) + 1)) Z (l/yillFx)Zerm/ X T4
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for some irreducible representation my. If r=¢(7y) equals ny —ng+r"(79) + 1,
then 0~¢(7,n1 — ng +r~ (1) + 1) is a subrepresentation of

5(3/ — 1, 1F>< )mil X 5([Vﬁy1Fx,l/y711F><]) X eie(To,Tie(T()))

and it follows at once that no representation of the form (1Y xy.1px )" ™ ®
75 appears in p*(0~¢(1,n1 —no+r (1) +1)). Consequently, r~¢(71) equals
ny —ng + 7 ¢(79) and the proposition is proved. O

The remaining possibility is treated in the following proposition.

Proposition 5.5. Suppose that the induced representation §(y—1, xvy1lpx )™ X
To 18 a direct sum of copies of two non-isomorphic tempered representations.
If ¥ (11) contains an irreducible constituent of the form (VY™ xyylpx )™ @,
then r=(1) = ny —nog + (7). Otherwise r=<(11) =ny —ng + 1 (70) + 1.

Proof. In this case, §(y — 1, xyxv:1px)™ % 0(19, 19 — t.) reduces and it fol-
lows that (2y — 1, xyxv/1px) & Jord(6°(79,no — t.)). Corollary 4.4 implies
that the representation 60 ¢(7y, 7 ¢(79)) is a discrete series representation.
Also, Lemma 4.5 implies that R (70)(vY " xvylpx) = 0 and it follows from
Proposition 3.4 that Rp, (0~¢(70,7 (7)) (v? '1px) = 0.

Thus, p*(8(y—1, xv.elepx)™x7p) contains an irreducible constituent of the
form (1Y xyy1px)?™ @, and it does not contain an irreducible constituent
of the form (¥~ xyplpx )™ @ .

Let us denote by 7, and 7, the two not isomorphic irreducible subrep-
resentations of 0(y — 1, xv.plrx)™ X 7. There is some i € {a,b} such that
w*(7;) contains an irreducible constituent of the form (1Y !xy ,1rx)*" @ ;.
There is no loss of generality in assuming ¢+ = a.

In the same way as in the proof of Proposition 5.3 we obtain r—¢(7,),
(1) € {n1—no+r"(10),n1 —no+r"(1)+1}. The assumption r—¢(7,) =
ny —ng +r%(79) + 1 implies

9_6(7'@, T_e(Ta)) — 5(y— 1, ]_F>< )m—l X 6([I/_y1F>< , I/y_l]_px]) X 9_6(7'0, 7"_6(7—0)),

and, since Rp, (07(70,7 (70))(¥¥ '1px) = 0, it can be seen that this is
impossible in the same way as in the proof of Proposition 5.4. Consequently,
r=(14) =mn1 —ng +1r(10). Also, 0~(1,,r"%(7,)) is a subrepresentation of

(5(y — ]_, ]_F>< )m X (9_6(7'0,7“_6(7'0)),

which is irreducible by Corollary 4.4 and [19, Lemma 2.3].
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We will now prove that r~¢(7,) equals ny —ng +1r-(79) + 1. Suppose, on
the contrary, that r~¢(7,) = ny —ng +1r-(79). Then 6=(7,,r (1)) is also a
subrepresentation of d(y — 1, 1px)™ x 6~(79, 7 (70)) and

0 (Tag,n1 — g+ 1" (10)) 20 (1,01 —np + 71 (70)),

which is impossible since 7, and 7, are not isomorphic. Consequently, r~¢(7;,) =
ny —ng+r (1) + 1 and 0~(m,, 7~ (7)) is a subrepresentation of

5(:{/ — 1, 1F>< )m—l X 5([I/_ylpx,l/y_llp><]) X 9_6(7_0,7'_€<7_0)).

Now the fact that Rp, (0~(7o,7(70)) (¥ '1rx) = 0, the structural formula
for p/* and Proposition 3.4 can be used to show that p*(7,) does not contain
an irreducible constituent of the form (v¥~'xy 1px)?™ ® . This completes
the proof. n

The following proposition completes the proof of Theorem 5.2. It can
be proved in an analogous way as Proposition 5.3, details being left to the
reader.

Proposition 5.6. Suppose that u*(7) contains an irreducible constituent of
the form 6(y — 1, xvylpx) @ m and denote by m the largest integer such
that p*(1) contains 6(y — 1, Xvplpx)™ @ w for an irreducible m. We assume
(x1,p1,m1) = (y — 1, 1px,m). Then r~<(1;) = n; — ny +r (1) fori =
2,3,...,t—1.
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