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Abstract

We explicitly determine the first occurrence indices of tempered
representations of metaplectic groups over a non-archimedean local
field of characteristic zero with odd residual characteristic.

Abstract

We explicitly determine the first occurrence indices of tempered
representations of metaplectic groups over a non-archimedean local
field of characteristic zero.

1 Introduction

In this paper we study the theta correspondence for the metaplectic odd-
orthogonal reductive dual pair and determine the first occurrence indices of
tempered representations of the metaplectic group over a non-archimedean
local field of characteristic zero. It is well known that a tempered represen-
tation can be obtained as a subrepresentation of the representation parabol-
ically induced from discrete series of general linear groups (or their two-fold
covers) and a discrete series of the group of same type and smaller rank.
Therefore, we provide a description of the first occurrence indices of tem-
pered representations in terms of the first occurrence indices of discrete series
of metaplectic groups, which have been obtained in our previous work ([13]).

In the last several years, a substantial progress has been made in study-
ing the local theta correspondence. In particular, the conservation relation,
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which states that the first occurrence indices of an irreducible admissible
representation of the rank n metaplectic group sum up to 2n, has recently
been proved by Sun and Zhu (and independently by Gan and Ichino in [3,
Theorem 9.3]).

This deep result reduces the investigation of the first occurrence indices
to determination of one of them. For tempered representations, we determine
the larger first occurrence index, i.e., the first occurrence index corresponding
to the orthogonal group of the space of larger dimension. To determine such
first occurrence index, we use methods for pushing down the theta lifts in the
same way as in [12] and [13], together with description of tempered represen-
tations of metaplectic groups arising from the work of Gan and Savin, and
some elementary properties of Jacquet modules of tempered representations.
Also, since our description is given in terms of the first occurrence indices of
discrete series representations, an important role is played by precise knowl-
edge of the structure of the first non-zero lifts of discrete series of metaplectic
groups.

An analogous problem for the symplectic even-orthogonal dual pair has
been addressed in [19]. However, in an exceptional case we also provide a
simple criterion for differentiating between tempered representations with
different first occurrence indices, in terms of their Jacquet modules.

We now describe the contents of the paper in more detail. In the next
section we set up notation and terminology, while in the third section we
recall standard facts on the theta correspondence and review basic techniques
for determining the first occurrence indices. In Section 4 we provide a precise
description of the first non-zero theta lifts of discrete series in the orthogonal
tower corresponding to the larger first occurrence index. Section 5 is devoted
to determination of the first occurrence indices of tempered representations
of metaplectic groups.

The author would like to thank Šime Ungar for help with English lan-
guage. The author would also like to thank the referee for a number of
corrections and very useful suggestions.

This work has been supported by Croatian Science Foundation under the
project 9364.
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2 Notation

Let F stand for a non-archimedean local field of characteristic zero with odd
residual characteristic.

Let S̃p(n) denote the metaplectic group of rank n, the unique non-trivial
two-fold central extension of the symplectic group Sp(n, F ). In other words,
we have

1 → µ2 → S̃p(n) → Sp(n, F ) → 1,

where µ2 = {1,−1}.
In this paper we are interested only in genuine representations of S̃p(n)

(i.e., those which do not factor through µ2). Thus, let Irr(S̃p(n)) stand for the
set of isomorphism classes of irreducible admissible genuine representations

of the group S̃p(n). Furthermore, let S(S̃p(n)) denote the Grothendieck
group of the category of all admissible genuine finite length representations

of S̃p(n) and we define S =
⊕

n≥0 S(S̃p(n)).
Let V0 be an anisotropic quadratic space over F of odd dimension (recall

that its dimension can only be 1 or 3). To obtain the odd orthogonal tower,
for each non-negative integer r let Vr be the orthogonal direct sum of V0 with
r hyperbolic planes. We assume that Vr comes equipped with a fixed Witt
decomposition Vr = V ′

r ⊕ V0 ⊕ V ′′
r and with bases {v′1, . . . , v′r} for V ′

r and
{v′′1 , . . . , v′′r} for V ′′

r satisfying (v′i, v
′
j) = (v′′i , v

′′
j ) = 0 and (v′i, v

′′
j ) = δij. The

corresponding orthogonal group will be denoted by O(Vr). Set mr =
1
2
dimVr.

To a fixed quadratic character χ of F× one can attach two odd orthogonal
towers, one with dimV0 = 1 (+ -tower) and the other with dimV0 = 3 (− -
tower), as in Chapter V of [10]. The corresponding orthogonal groups will
be denoted by O(V +

r ) and O(V −
r ).

Similarly as before, let Irr(O(Vr)) denote the set of isomorphism classes
of irreducible admissible representations of the orthogonal group O(Vr).

Let ˜GL(n, F ) denote the double cover of the general linear groupGL(n, F ),
where the multiplication is given by (g1, ϵ1)(g2, ϵ2) = (g1g2, ϵ1ϵ2(detg1, detg2)F ).
Here ϵi ∈ µ2, i = 1, 2, and (·, ·)F denotes the Hilbert symbol of the field F .

In what follows, we fix a non-trivial additive character ψ of F . We denote

by χψ the genuine character of ˜GL(n, F ) given by χψ(g, ϵ) = ϵγ(detg, ψ 1
2
)−1,

where γ denotes the Weil index, and for a ∈ F× we have ψa(x) = ψ(ax).
For V = Vr we denote by χV the quadratic character of F× given by

χV (x) = (x, (−1)k det(V ))F , where det(V ) is the determinant of the matrix
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of the bilinear form on V and k = dimV · (dimV − 1)/2. We note that
this character is, in fact, independent of r, by [9, page 240]. To simplify
the notation, the character of GL(n, F ) given by g 7→ χV (det g) will also be

denoted by χV . Furthermore, we define the character χV,ψ of ˜GL(n, F ) by
χV,ψ(g, ϵ) = χV (g)χψ(g, ϵ). We write α = χ2

ψ and note that [10, Lemma 4.1]
implies that α is a quadratic character of GL(n, F ).

We define Rgen = ⊕nR( ˜GL(n, F ))gen, where R( ˜GL(n, F ))gen denotes the
Grothendieck group of the category of all admissible genuine finite length

representations of ˜GL(n, F ). Also, we denote by Irr(GL(n, F )) the set of
isomorphism classes of irreducible admissible representations of GL(n, F )

and by Irr( ˜GL(n, F )) the set of isomorphism classes of irreducible admissible

representations of ˜GL(n, F ). Using the genuine character χψ, in the same
way as in [4, Section 2] or in [8, Section 4], one obtains a bijection between

Irr(GL(n, F )) and Irr( ˜GL(n, F )) via ρ 7→ χψρ = χψ ⊗ ρ.
Throughout the paper, ν stands for the character of GL(n, F ) defined

by |det|F . If ρ is an irreducible cuspidal representation of GL(nρ, F ) (this

defines nρ), or such genuine representation of ˜GL(nρ, F ), we call the set
∆ = {νaρ, νa+1ρ, . . . , νa+kρ} a segment, where a ∈ R and k ∈ Z≥0. In the
sequel, we abbreviate {νaρ, νa+1ρ, . . . , νa+kρ} to [νaρ, νa+kρ]. We denote by
δ(∆) the unique irreducible quotient of νaρ× νa+1ρ× · · · × νa+kρ. The rep-
resentation δ(∆) is an essentially square-integrable representation attached
to the segment ∆. If ρ is a genuine representation, then so is δ(∆) (by [8,
Proposition 4.2]).

To shorten the notation, for a non-negative half integer x and an irre-
ducible cuspidal representation ρ of GL(nρ, F ) we denote by δ(x, ρ)k the
induced representation

δ([ν−xρ, νxρ])× δ([ν−xρ, νxρ])× · · · × δ([ν−xρ, νxρ]),

where δ([ν−xρ, νxρ]) appears k times. Also, the induced representation νx1F××
νx1F× × · · · × νx1F× , where νx1F× appears k times, will be denoted by
(νx1F×)k.

We define δ(x, χψρ)
k and (νxχψ1F×)k in the completely analogous way.

It follows from [25, Theorem 9.7] that all these induced representations are
irreducible. Also, all these representations are non-degenerate in the sense
of [2, page 455].
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For an ordered partition s = (n1, n2, . . . , ni) of some m ≤ n, we denote by
Ps the standard parabolic subgroup of Sp(n, F ) (consisting of block upper-
triangular matrices) whose Levi subgroupMs equalsGL(n1, F )×GL(n2, F )×
· · ·×GL(ni, F )×Sp(n−m,F ). Then the standard parabolic subgroup P̃s of

S̃p(n) is the preimage of Ps in S̃p(n) and its Levi subgroup M̃s differs from the

product ˜GL(n1, F )× ˜GL(n2, F )×· · ·× ˜GL(ni, F )× ˜Sp(n−m,F ) by a finite
subgroup. This enables us to write every irreducible genuine representation π
of M̃s in the form π1⊗π2⊗· · ·⊗πi⊗σ where all representations π1, π2, . . . , πi, σ

are genuine at the same time. We will denote the representation of S̃p(n)
parabolically induced from π1 ⊗ π2 ⊗ · · · ⊗ πi ⊗ σ by π1 × π2 × · · · × πi o
σ. If s = (k), for some 0 ≤ k ≤ n, we denote Ps briefly by Pk and P̃s
briefly by P̃k. The standard parabolic subgroups of O(Vn) have an analogous
description as those of Sp(n, F ). The normalized Jacquet module of a smooth

representation σ of S̃p(n) with respect to the standard parabolic subgroup

P̃s will be denoted by RP̃s
(σ). It can be easily checked that for an irreducible

representation σ of S̃p(n), RP̃s
(σ) is a genuine representation of M̃s and,

as such, can be interpreted as an element of Rgen ⊗ S, the Grothendieck
group of the category of all admissible genuine finite length representations

of Levi subgroups of the maximal parabolic subgroups of S̃p(n), for all n.
The normalized Jacquet module of a smooth representation σ of O(Vr) with
respect to the standard parabolic subgroupQs will be denoted byRQs(σ). For
a cuspidal representation ρ of Irr(GL(nρ, F )) and a genuine representation

σ of S̃p(n), we write RP̃nρ
(σ)(χψρ) for the maximal χψρ-isotypic quotient of

RP̃nρ
(σ). It is a maximal direct summand of RP̃nρ

(σ) on which ˜GL(nρ, F )

acts by χψρ. Also, let RQnρ
(τ)(ρ) denote the maximal ρ-isotypic quotient of

RQnρ
(τ) for representation τ of O(Vr).

Let σ ∈ Irr(S̃p(n)). We define µ∗(σ) ∈ Rgen ⊗ S by

µ∗(σ) =
n∑
k=0

s.s.(RP̃k
(σ))

(s.s. denotes the semisimplification), and extend µ∗ linearly to the whole
of S. In the same way µ∗ can be defined for irreducible representations of
classical groups. If µ∗(σ) contains a constituent of the form π ⊗ σ′, we write
µ∗(σ) ≥ π ⊗ σ′.
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In the following theorem we recall the metaplectic version of the structure
formula (obtained in [8]), due to Tadić in the classical group case ([22]).

Theorem 2.1. Let ρ ∈ Rgen be an irreducible cuspidal representation, and
a, b ∈ R be such that a + b ∈ Z≥0. Let σ be an admissible genuine rep-

resentation of finite length of S̃p(n). Let µ∗(σ) =
∑

π,σ′ π ⊗ σ′. Then we
have:

µ∗(δ([ν−aρ, νbρ])o σ) =
b∑

i=−a−1

b∑
j=i

∑
π,σ′

δ([ν−iαρ̃, νaαρ̃])× δ([νj+1ρ, νbρ])× π

⊗ δ([νi+1ρ, νjρ])o σ′

where ρ̃ denotes the contragredient of ρ. We omit δ([νxρ, νyρ]) if x > y.

Also, we recall that by the Mœglin-Tadić classification, which is given
in [14, 16], several invariants are attached to a discrete series representation
σ of an orthogonal group. One of them is the partial cuspidal support of
σ, which we denote by σsc. The other invariant attached to σ is its Jordan
block, denotes by Jord(σ), and defined as the set of all pairs (a, ρ) where a
is a positive integer and ρ ∈ Irr(GL(nρ, F )) is a cuspidal self-contragredient
representation such that the following two conditions are satisfied:

1. a−1
2

− sρ,σsc is an integer, for the unique non-negative sρ,σsc such that
νsρ,σscρo σsc reduces (such sρ,σsc exists by [20]),

2. the induced representation δ([ν−
a−1
2 ρ, ν

a−1
2 ρ])o σ is irreducible.

For a cuspidal self-contragredient representation ρ ∈ Irr(GL(nρ, F )), we set
Jordρ(σ) = {a ∈ Z : (a, ρ) ∈ Jord(σ)}.

We emphasize that the Mœglin-Tadić classification now holds uncondi-
tionally, since the natural hypothesis on which this classification is based now
follows from the results of [1] and is proved in [15, Théorème 3.1.1].

3 Preliminary results on theta correspondence

In this section we review some results about the theta correspondence which
will be used later.

The pair (Sp(n, F ), O(Vr)) is a reductive dual pair in Sp(n · dimVr, F )
and the theta correspondence relates the representations of the metaplectic
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group S̃p(n) and those of the orthogonal group O(Vr). Define n1 = n ·dimVr
and let ωn,r denote the pull-back of the Weil representation ωn1,ψ of the group

S̃p(n1), restricted to the dual pair S̃p(n)×O(Vr) (as in [10]).

For σ ∈ Irr(S̃p(n)), we let Θ(σ, r) denote the smooth representation of
O(Vr) given as the big theta lift of σ to the r-th level of the orthogonal
tower. The big theta lift Θ(σ, r) is the maximal σ-isotypic quotient of ωn,r.
Specially, we write Θ+(σ, r) for the big theta lift of σ to the r-th level of the
+ -orthogonal tower and Θ−(σ, r) for the big theta lift of σ to the r-th level
of the − -orthogonal tower,

Similarly, for τ ∈ Irr(O(Vr)) we denote by Θ(τ, n) the big theta lift of the

representation τ , which is a smooth genuine representation of S̃p(n).
In the following theorem we summarize important results on the theta

correspondence, proved in [10], [17], [21] and [24]. We note that the second
part of the theorem, which is on the Howe duality, is now proved for any
residual characteristic by Gan and Takeda ([6]).

Theorem 3.1. For σ ∈ Irr(S̃p(n)) there is a non-negative integer r such
that Θ(σ, r) ̸= 0. The smallest such r is called the first occurrence index of
σ in the orthogonal tower and will be denoted by r(σ). Also, Θ(σ, r′) ̸= 0 for
r′ ≥ r. We write r+(σ) for the first occurrence index of σ in the + -orthogonal
tower and r−(σ) for the first occurrence index of σ in the − -orthogonal tower.

The first occurrence indices satisfy the following equality, called the con-
servation relation:

r+(σ) + r−(σ) = 2n.

The representation Θ(σ, r) is either zero or it has a unique irreducible
quotient. We denote this unique irreducible quotient by θ(σ, r). Also, we
write θ+(σ, r) for this irreducible quotient in the + -orthogonal tower and
θ−(σ, r) for this irreducible quotient in the − -orthogonal tower.

If σ1 and σ2 are irreducible genuine representations of S̃p(n) such that
θ(σ1, r) ̸= 0 and θ(σ1, r) ∼= θ(σ2, r), then σ1 ∼= σ2.

For τ ∈ Irr(O(Vr)), the representation Θ(τ, n) is either zero or it has
a unique irreducible quotient, which we denote by θ(τ, n). If τ1 and τ2 are
irreducible representations of O(Vr) such that θ(τ1, n) ̸= 0 and θ(τ1, n) ∼=
θ(τ2, n), then τ1 ∼= τ2.

In the rest of this section we fix an odd orthogonal tower and denote
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by χV,ψ the character of ˜GL(n, F ) related to this orthogonal tower and to
character ψ.

Now we state a criterion ([12, Proposition 5.1] and [13, Corollary 6.4]) for
pushing down the lifts of irreducible representations.

Lemma 3.2. Suppose that σ is an irreducible genuine representation of

S̃p(n). Then Θ(σ, r) ̸= 0 implies RP1(Θ(σ, r + 1))(ν−(mr+1−n−1)1F×) ̸= 0.
Furthermore, if RP̃1

(σ)(ν−(mr+1−n−1)χV,ψ1F×) = 0, then Θ(σ, r) ̸= 0 if

and only if RP1(Θ(σ, r + 1))(ν−(mr+1−n−1)1F×) ̸= 0.

Also, if σ is a discrete series representation of S̃p(n) and Θ(σ, r) ̸= 0, then
θ(σ, r+1) is a subrepresentation of the induced representation ν−(mr+1−n−1)1F×o
θ(σ, r).

We take a moment to state several results which will be frequently used
in the paper. The first one is ([13, Proposition 3.7]).

Proposition 3.3. Suppose that an irreducible representation σ ∈ Irr(S̃p(n))
can be written as an irreducible subrepresentation of the induced representa-
tion δ([νaχV,ψρ, ν

bχV,ψρ])oσ′, where ρ is an irreducible cuspidal representa-

tion of GL(nρ, F ), σ
′ ∈ Irr(S̃p(n′)) and b−a ≥ 0. If Θ(σ, r) ̸= 0 and (a, ρ) ̸=

(mr−n, 1F×), then there exists an irreducible representation τ of some O(Vr′)
such that θ(σ, r) is a subrepresentation of δ([νaρ, νbρ])oτ . Furthermore, sup-
pose that if µ∗(σ) contains the representation δ([νaχV,ψρ, ν

bχV,ψρ])⊗ σ′′, for

some irreducible genuine representation σ′′ of S̃p(n′), then σ′′ ∼= σ′. Then
θ(σ, r) is a subrepresentation of

δ([νaρ, νbρ])o θ(σ′, r − n+ n′).

We note that there is an analogous result for irreducible admissible rep-
resentations of odd orthogonal groups ([13, Proposition 3.8]).

The following two propositions play an important role in determination
of theta lifts of tempered representations and can be proved in an analogous
way as [19, Theorem 3.8] and [19, Theorem 3.9].

Proposition 3.4. Let σ denote an irreducible genuine representation of

S̃p(n). If µ∗(σ) ≥ (νxχV,ψ1F×)k ⊗ σ′ for some irreducible representation
σ′ and Θ(σ, r) ̸= 0 for x ̸= mr−n, then µ∗(θ(σ, r)) ≥ (νx1F×)k⊗π for some
irreducible representation π. Also, if σ is a subrepresentation of the induced
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representation δ(x, χV,ψρ)
koσ′, for some σ′ ∈ Irr(S̃p(n′)) such that µ∗(σ) ≥

δ(x, χV,ψρ)
k⊗σ′′ leads to σ′′ ∼= σ′, then Θ(σ, r) ̸= 0 and (x, ρ) ̸= (mr−n, 1F×)

imply that θ(σ, r) is a subrepresentation of δ(x, ρ)k o θ(σ′, r − n+ n′).

Proposition 3.5. Let τ denote an irreducible representation of O(Vr). If
µ∗(τ) ≥ (νx1F×)k⊗ τ ′ for some irreducible representation τ ′ and Θ(τ, n) ̸= 0
for x ̸= n−mr +1, then µ∗(θ(τ, r)) ≥ (νxχV,ψ1F×)k ⊗ π for some irreducible
representation π. Also, if τ is a subrepresentation of the induced representa-
tion δ(x, ρ)k o τ ′, for some τ ′ ∈ Irr(O(Vr′)) such that µ∗(τ) ≥ δ(x, ρ)k ⊗ τ ′′

implies τ ′′ ∼= τ ′, then Θ(τ, n) ̸= 0 and (x, ρ) ̸= (n −mr + 1, 1F×) imply that
θ(τ, r) is a subrepresentation of δ(x, χV,ψρ)

k o θ(τ ′, n− r + r′).

4 Theta lifts of discrete series

In this section we discuss the theta lifts of discrete series representations

of metaplectic groups. Set t+ = 0 and t− = 1 and let σ ∈ Irr(S̃p(n))
denote a discrete series representation. By [4, Theorem 1.1], there is a unique
ϵ ∈ {+,−} such that Θϵ(σ, n − tϵ) ̸= 0. We will determine the structure of
the first non-zero theta lift of the representation σ in the −ϵ-tower. Since for
strongly positive σ the structure of θ−ϵ(σ, r−ϵ(σ)) is given in Section 4 of [13],
we assume that σ is a non-strongly positive discrete series. In what follows,
we denote by χV the quadratic character of GL(n, F ) related to −ϵ-tower
and define χV,ψ in the same way as before.

It has been proved in Section 6 of [13] that for each σ there is an or-
dered s-tuple S = (σ0, σ1, . . . , σs−1) of discrete series representations, σi ∈
Irr(S̃p(ni)), where σs−1

∼= σ and σ0 is strongly positive, such that the follow-
ing properties hold:

(i) for every i ∈ {1, 2, . . . , s− 1} there exist a self-contragredient cuspidal
representations ρi ∈ Irr(GL(mi, F )) and non-negative half-integers ai, bi
with bi−ai ∈ Z>0 and ai−c ∈ Z for all 2c−1 ∈ Jordρi(θ

ϵ(σi−1, ni−1−tϵ)),
such that σi is a subrepresentation of δ([ν−aiχV,ψρi, ν

biχV,ψρi]) o σi−1

and Jordρi(θ
ϵ(σi−1, ni−1 − tϵ))∩ [2ai + 1, 2bi + 1] = ∅ (we note that this

also gives RP̃mi
(σi−1)(ν

xχV,ψρi) = 0 for ai ≤ x ≤ bi);

(ii) if ρi ∼= ρj for i < j, then ρi ∼= ρl for l ∈ {i+ 1, i+ 2, . . . , j};

(iii) if ρi ∼= ρi+1 then ai < ai+1;
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(iv) if there is some i ∈ {1, 2, . . . , s− 1} such that ρi ∼= 1F× , then ρ1 ∼= 1F× .

We note that Θϵ(σi, ni− tϵ) ̸= 0 for all i ∈ {0, 1, . . . , s−1}. Also, if µ∗(σi)
contains some irreducible constituent of the form δ([ν−aiχV,ψρi, ν

biχV,ψρi])⊗
σ′, then σ′ ∼= σi−1.

Let us denote by U(σ) the set of all such ordered s-tuples of discrete
series representations. To each S ∈ U(σ) we attach a non-negative half-
integer min(S) which is the minimal x such that σ0 can be written as the
unique irreducible subrepresentation of the induced representation of the
form δ([νxχV,ψ1F× , νyχV,ψ1F× ])o σsp, y ≥ x, for a strongly positive discrete
series σsp, or zero if such x does not exist.

We call an ordered s-tuple S ∈ U(σ) minimal if min(S) ≤ min(S ′) for
every S ′ ∈ U(σ).

In what follows, we fix a minimal ordered s-tuple S = (σ0, σ1, . . . , σs−1)
and write σi ↪→ δ([ν−aiχV,ψρi, ν

biχV,ψρi]) o σi−1 in the same way as in (i)
above. Set m = n1 − tϵ − rϵ(σ1). We denote by k the largest integer j,
1 ≤ j ≤ s−1, such that (ai, ρi) = (m+ i− 1

2
, 1F×) for i = 1, 2, . . . , j. If there

is no such j, we set k = 0. If k > 0, we denote by l the largest integer j,
1 ≤ j ≤ k, such that RP̃1

(σ)(νaiχV,ψ1F×) = 0 for i = 1, 2, . . . , j. If there is
no such j, or k = 0, we set l = 0.

By [13, Proposition 6.2], we have

r−ϵ(σ) = n− t−ϵ +m+ l + 1. (1)

To describe the representation θ−ϵ(σ, r−ϵ(σ)) we need the following two
lemmas. The first one presents an important part of Mœglin-Tadić classifi-
cation of discrete series and its proof can be found in Sections 9 and 10 of
[16] and in [18, Theorem 2.1].

Lemma 4.1. Suppose that π is a discrete series of an orthogonal group and
ρ ∈ Irr(GLnρ , F ) is a self-contragredient cuspidal representation. Let a and
b denote non-negative half integers such that b− a ∈ Z>0 and a− c ∈ Z for
all 2c+1 ∈ Jordρ(π). Also, suppose Jordρ(π)∩ [2a+1, 2b+1] = ∅. Then the
induced representation

δ([ν−aρ, νbρ])o π

contains two irreducible subrepresentations which are non-isomorphic and
square-integrable.
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Lemma 4.2. Let π denote a discrete series of an orthogonal group and
let ρ ∈ Irr(GLnρ , F ), ρ

′ ∈ Irr(GLnρ′ , F ) denote self-contragredient cuspi-
dal representations. Let a and b stand for non-negative half integers such
that b − a ∈ Z>0 and a − c ∈ Z for all 2c + 1 ∈ Jordρ(π). Also, suppose
Jordρ(π)∩ [2a+1, 2b+1] = ∅. Let x denote a non-negative half integer such
that x−c ∈ Z for all 2c+1 ∈ Jordρ′(π) and let τ be an irreducible (tempered)
subrepresentation of

δ([ν−xρ′, νxρ′])o π.

If ρ ∼= ρ′, we additionally assume x ̸∈ [a, b]. Then every irreducible subrepre-
sentation of δ([ν−aρ, νbρ])o τ is an irreducible tempered subrepresentation of
δ([ν−xρ′, νxρ′]) o π′ for some irreducible square-integrable subrepresentation
π′ of δ([ν−aρ, νbρ])o π.

Proof. Let π1 denote an irreducible subrepresentation of δ([ν−aρ, νbρ]) o τ .
The assumption of the lemma gives

π1 ↪→ δ([ν−aρ, νbρ])×δ([ν−xρ′, νxρ′])oπ ∼= δ([ν−xρ′, νxρ′])×δ([ν−aρ, νbρ])oπ.

It can be easily seen, using the structural formula for µ∗, that the irreducible
representation δ([ν−xρ′, νxρ′]) ⊗ δ([ν−aρ, νbρ]) ⊗ π appears with multiplicity
four in the Jacquet module of δ([ν−xρ′, νxρ′])×δ([ν−aρ, νbρ])oπ with respect
to the appropriate parabolic subgroup.

We will denote non-isomorphic irreducible subrepresentations of the in-
duced representation δ([ν−aρ, νbρ])oπ by π2 and π3. Obviously, δ([ν−xρ′, νxρ′])o
πi is a subrepresentation of δ([ν−xρ′, νxρ′]) × δ([ν−aρ, νbρ]) o π for i = 2, 3.
Also, δ([ν−xρ′, νxρ′])o π2 reduces if and only if δ([ν−xρ′, νxρ′])o π3 reduces.

If x is an integer, set s1 = (2x+ 1) · nρ′ , otherwise set s1 = 2x · nρ′ . Also,
set s2 = (a+ b+ 1) · nρ and let s = (s1, s2).

If the induced representation δ([ν−xρ′, νxρ′])o π2 is irreducible, then the
irreducible representation δ([ν−xρ′, νxρ′]) ⊗ δ([ν−aρ, νbρ]) ⊗ π appears with
multiplicity two in the Jacquet modules of both δ([ν−xρ′, νxρ′]) o π2 and
δ([ν−xρ′, νxρ′])o π3 with respect to the standard parabolic subgroup Qs.

If the induced representation δ([ν−xρ′, νxρ′])oπ2 reduces, both represen-
tations δ([ν−xρ′, νxρ′]) o π2 and δ([ν−xρ′, νxρ′]) o π3 are direct sums of two
tempered irreducible subrepresentations and Jacquet modules with respect
to to the standard parabolic subgroup Qs of each of these subrepresentations
contains δ([ν−xρ′, νxρ′])⊗ δ([ν−aρ, νbρ])⊗ π with multiplicity one.
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In any case, there is an i ∈ {2, 3} such that π1 is an irreducible subrepre-
sentation of δ([ν−xρ′, νxρ′]) o πi and π1 is obviously tempered. This proves
the lemma.

Now we are ready to provide our description of the first non-zero theta
lift of discrete series σ in the −ϵ-tower. We note that the first statement of
the following theorem is subsumed under [5, Proposition 3.1].

Theorem 4.3. Let σ ∈ Irr(S̃p(n)) be a discrete series representation and
let ϵ denote + or − such that Θϵ(τ, n − tϵ) ̸= 0, where t+ = 0 and t− = 1.
The first non-zero theta lift θ−ϵ(σ, r−ϵ(σ)) in the −ϵ-tower is a tempered
representation. Let χV denote the quadratic character related to −ϵ-tower
and let χV,ψ = χV χψ. For a minimal ordered s-tuple S = (σ0, σ1, . . . , σs−1),

σi ∈ Irr(S̃p(ni)) and σi ↪→ δ([ν−aiχV,ψρi, ν
biχV,ψρi])oσi−1, we denote by k the

largest integer j, 1 ≤ j ≤ s−1, such that (ai, ρi) = (n1−tϵ−rϵ(σ1)+i− 1
2
, 1F×)

for i = 1, 2, . . . , j. If there is no such j, we set k = 0. If k > 0, we denote
by l the largest integer j, 1 ≤ j ≤ k, such that RP̃1

(σ)(νaiχV,ψ1F×) = 0
for i = 1, 2, . . . , j. If there is no such j, or k = 0, we set l = 0. Then
θ−ϵ(σ, r−ϵ(σ)) is a discrete series representation if and only if k = l and
bk > ak + 1, if k > 0.

Proof. Several possibilities will be considered separately. Let us first discuss
the case k = 0. In this case, it follows directly from the result obtained
in Section 4 of [13] that Jordρi(θ

−ϵ(σ0, r
−ϵ(σ0))) ∩ [2ai + 1, 2bi + 1] = ∅ for

i = 1, 2, . . . , s− 1.
Using the description of the first occurrence indices given by (1) and

Proposition 3.3, we deduce that θ−ϵ(σi, r
−ϵ(σi)) is an irreducible subrepre-

sentation of
δ([ν−aiρi, ν

biρi])o θ−ϵ(σi−1, r
−ϵ(σi−1))

for all i = 1, 2, . . . , s−1. Now the description of Jordan blocks of an induced
representation, given in [16, Proposition 2.1], enables us to use Lemma 4.1
to conclude that the representation θ−ϵ(σi, r

−ϵ(σi)) is a discrete series repre-
sentation for all i = 1, 2, . . . , s − 1 and Jordρi(θ

−ϵ(σi−1, r
−ϵ(σi−1))) ∩ [2ai +

1, 2bi + 1] = ∅ for i = 2, 3, . . . , s− 1.
Now we consider the case k > 0. If l = 0, then θ−ϵ(σ1, r

−ϵ(σ1)) is an
irreducible subrepresentation of

δ([ν−a11F× , νb11F× ])o θ−ϵ(σ0, r
−ϵ(σ0)) (2)
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and 2a1+1 ∈ Jord1F× (θ
−ϵ(σ0, r

−ϵ(σ0)). It can be easily seen that θ−ϵ(σ1, r
−ϵ(σ1))

is not a discrete series representation. Let us assume that it is a non-tempered
representation. Then there is an irreducible constituent of µ∗(θ−ϵ(σ1, r

−ϵ(σ1)))
of the form δ([ν−cρ, νdρ])⊗π, such that −c+ d < 0. Since θ−ϵ(σ0, r

−ϵ(σ0)) is
a discrete series representation, applying the formula for µ∗ to (2), we obtain
ρ ∼= 1F× and c > a1. Using Proposition 3.8 of [13], we get a contradic-
tion with the square-integrability of σ1. Thus, θ

−ϵ(σ1, r
−ϵ(σ1)) is a tempered

representation and it is a subrepresentation of

δ([ν−a11F× , νa11F× ])o σ′,

where σ′ is a discrete series subquotient of the induced representation

δ([νa1+11F× , νb11F× ])o θ−ϵ(σ0, r
−ϵ(σ0)).

We note that Jord(σ′) = Jord(θ−ϵ(σ0, r
−ϵ(σ0))) \ {(2a1 + 1, 1F×)} ∪ {(2b1 +

1, 1F×)}. Also, [23, Theorem 8.2] can be used to prove that σ′ is a subrepre-
sentation of δ([νa1+11F× , νb11F× ])oθ−ϵ(σ0, r−ϵ(σ0)), and that it is the unique
discrete series subquotient of this induced representation.

Proposition 3.3 and (1) show that θ−ϵ(σi, r
−ϵ(σi)) is an irreducible sub-

representation of

δ([ν−aiρi, ν
biρi])o θ−ϵ(σi−1, r

−ϵ(σi−1))

for all i = 2, . . . , s− 1. Furthermore, Lemma 4.2 can be used to deduce that
there is an ordered (s− 1)-tuple of discrete series (σ′

1, σ
′
2, . . . , σ

′
s−1) such that

σ′
1
∼= σ′ and σ′

j is an irreducible subrepresentation of δ([ν−ajρj, ν
bjρj])oσ′

j−1

with aj such that aj − c ∈ Z for all c ∈ Jordρj(σ
′
j−1) and Jordρj(σ

′
j−1) ∩

[2aj + 1, 2bj + 1] = ∅ for all j = 2, . . . , s − 1 and, for every i = 2, . . . , s − 1,
θ−ϵ(σi, r

−ϵ(σi)) is an irreducible tempered subrepresentation of

δ([ν−a11F× , νa11F× ])o σ′
i−1.

In the rest of the proof we may assume l > 0. Using the results from
Section 4 of [13], we deduce Jord1F× (θ

−ϵ(σ0, r
−ϵ(σ0))) ∩ [2a1 + 1, 2b1 + 1] =

2a1+1 and Jordρi(θ
−ϵ(σ0, r

−ϵ(σ0)))∩ [2ai+1, 2bi+1] = ∅ for i = 2, . . . , s−1.
We have

θ−ϵ(σ1, r
−ϵ(σ1)) ↪→ δ([ν−a11F× , νb11F× ])× ν−a1−11F× o θ−ϵ(σ0, r

−ϵ(σ0))
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and θ−ϵ(σ1, r
−ϵ(σ1)) is obviously contained in the kernel of the intertwining

operator

δ([ν−a11F× , νb11F× ])× ν−a1−11F× o θ−ϵ(σ0, r
−ϵ(σ0)) →

ν−a1−11F× × δ([ν−a11F× , νb11F× ])o θ−ϵ(σ0, r
−ϵ(σ0)),

i.e., θ−ϵ(σ1, r
−ϵ(σ1)) is a subrepresentation of the induced representation

δ([ν−a1−11F× , νb11F× ])o θ−ϵ(σ0, r
−ϵ(σ0)).

If b1 > a1+1, Lemma 4.1 implies that θ−ϵ(σ1, r
−ϵ(σ1)) is a discrete series

representation, and otherwise it is tempered. For i < k, obviously bi > ai+1.
Repeating the same procedure, we obtain that, for i ≤ l, θ−ϵ(σi, r

−ϵ(σi)) is
a discrete series subrepresentation of δ([ν−ai−11F× , νbi1F× ])oθ−ϵ(σi−1, r

−ϵ(σi−1)).
Observe that this gives (2(ai + 1) + 1, 1F×) ∈ Jord(θ−ϵ(σi, r

−ϵ(σi))).
If k = l and bk > ak + 1, in the same way as before we deduce that

θ−ϵ(σj, r
−ϵ(σj)) is a discrete series subrepresentation of δ([ν−ajρj, ν

bjρj]) o
θ−ϵ(σj−1, r

−ϵ(σj−1)) for all j = k+1, k+2, . . . , s−1. If k = l and bk = ak+1,
θ−ϵ(σk, r

−ϵ(σk)) is a tempered subrepresentation of δ([ν−bk1F× , νbk1F× ]) o
θ−ϵ(σk−1, r

−ϵ(σk−1)). An inductive procedure, based on Proposition 3.3 and
Lemma 4.2, shows that, for j = k + 1, k + 2, . . . , s − 1, θ−ϵ(σj, r

−ϵ(σj)) is a
tempered subrepresentation of δ([ν−bk1F× , νbk1F× ]) o σ′

j, where each σ′
j is a

discrete series subrepresentation of δ([ν−ajρj, ν
bjρj]) o σ′

j−1 with aj − c ∈ Z
for all 2c+ 1 ∈ Jordρj(σ

′
j−1) and Jordρj(σ

′
j−1) ∩ [2aj + 1, 2bj + 1] = ∅.

It remains to consider the case k > l. Now θ−ϵ(σl+1, r
−ϵ(σl+1)) is a sub-

representation of δ([ν−al+11F× , νbl+11F× ])oθ−ϵ(σl, r−ϵ(σl)). Since al+1 = al+1
and (2(al+1)+1, 1F×) ∈ Jord(θ−ϵ(σl, r

−ϵ(σl))), it follows that θ
−ϵ(σl+1, r

−ϵ(σl+1))
is not a discrete series. In the same way as in the case k > l = 0, we
deduce that θ−ϵ(σl+1, r

−ϵ(σl+1)) is a tempered subrepresentation of the in-
duced representation δ([ν−al+11F× , νal+11F× ])oσ′ for a unique discrete series
subquotient σ′ of δ([νal+1+11F× , νbl+11F× ])o θ−ϵ(σl, r

−ϵ(σl)). Using Proposi-
tion 3.3 and Lemma 4.2 we obtain that θ−ϵ(σj, r

−ϵ(σj)) is tempered for all
j = l + 1, l + 2, . . . , s− 1 and the theorem is proven.

In the rest of this section, we denote by χV ′ the quadratic character of
GL(n, F ) attached to the ϵ–tower in the same way as in Section 2.

Directly from the proof of the previous theorem, we obtain
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Corollary 4.4. Let y = r−ϵ(σ) − n + 1
2
+ t−ϵ. If θ−ϵ(σ, r−ϵ(σ)) is not a

discrete series representation, then (2 ·y−1, χV χV ′1F×) ∈ Jord(θϵ(σ, n− tϵ)).
If θ−ϵ(σ, r−ϵ(σ)) is a discrete series representation, then (2 · y − 1, 1F×) ∈
Jord(θ−ϵ(σ, r−ϵ(σ)).

We will also need the following result regarding Jacquet modules of dis-
crete series and their theta lifts:

Lemma 4.5. Suppose (2z + 1, χV χV ′ρ) ̸∈ Jord(θϵ(σ, n − tϵ)) for a cuspidal
self-contragredient representation ρ ∈ Irr(GL(nρ, F )). Then RP̃1

(σ)(νzχV,ψρ) =
0.

Proof. By [16, Lemma 3.6] we have RP1(θ
ϵ(σ, n − tϵ))(ν

zχV χV ′ρ) = 0. If
(z, ρ) ̸= (1

2
, χV χV ′1F×), Proposition 3.5 directly implies RP̃1

(σ)(νzχV,ψρ) = 0.

It remains to consider the case (z, ρ) = (1
2
, χV χV ′1F×). Suppose, contrary

to our assumption, that RP̃1
(σ)(ν

1
2χV,ψ1F×) ̸= 0. Now [13, Theorem 6.1] and

[12, Theorem 6.1] can be used to deduce (2z + 1, ρ) ∈ Jord(θϵ(σ, n − tϵ)),
which is impossible. This proves the lemma.

5 First occurrence indices of tempered rep-

resentations

Let τ denote an irreducible tempered representation of the metaplectic group

S̃p(n). As before, we set t+ = 0 and t− = 1 and let ϵ denote an element
of {+,−} such that Θϵ(τ, n − tϵ) ̸= 0. As in Section 2, we denote by χV
the quadratic character of GL(n, F ) related to the −ϵ-tower and by χV ′ the
quadratic character of GL(n, F ) related to the ϵ-tower.

Using well-known results for classical groups (i.e., Section 2 of [19]), to-
gether with [4, Theorem 1.3] and Proposition 3.5, we obtain that there ex-
ists an ordered t-tuple (τ0, τ1, . . . , τt−1) of tempered representations, τi ∈
Irr(S̃p(ni)), such that τ ∼= τt−1, τ0 is a discrete series representation and
for i ∈ {1, 2, . . . , t − 1} there is an irreducible cuspidal representation ρi of
GL(nρi , F ), a non-negative half-integer xi and a positive integer mi such that

τi ↪→ δ(xi, χV,ψρi)
mi o τi−1

and µ∗(τi−1) does not contain an irreducible constituent of the form δ(xi, χV,ψρi)⊗
π.
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We note that the last fact implies that if µ∗(τi) contains an irreducible
constituent of the form δ(xi, χV,ψρi)

mi ⊗ τ ′, then τ ′ ∼= τi−1.
Proposition 3.3 implies Θϵ(τi, ni − tϵ) ̸= 0 for i = 0, 1, . . . , t− 1.
Define y = r−ϵ(τ0) − n0 +

1
2
+ t−ϵ. Observe that θ−ϵ(τ0, r

−ϵ(τ0) + 1) is a
subrepresentation of ν−y1F× o θ−ϵ(τ0, r

−ϵ(τ0)).
The following lemma follows directly from [7] and Section 8 of [4] (Mackey

theory can be used to extend Goldberg’s results to the non-connected case,
as in [11, 16]):

Lemma 5.1. The induced representation δ(x, χV,ψρ)
m o τ0 is a direct sum

of tempered representations. It contains at most two non-isomorphic irre-
ducible subquotients and it contains exactly two non-isomorphic irreducible
subquotients if and only if the representation δ(x, χV χV ′ρ)m o θϵ(τ0, n0 − tϵ)
reduces.

The following theorem is the main result of this paper:

Theorem 5.2. Let τ ∈ Irr(S̃p(n)) be a tempered representation and let
ϵ ∈ {+,−} denote + or − such that Θϵ(τ, n − tϵ) ̸= 0, where t+ = 0 and
t− = 1. Denote by χV the quadratic character related to −ϵ-tower and let
χV,ψ = χV χψ. Let (τ0, τ1, . . . , τt−1) denote an ordered t-tuple of tempered

representations, τi ∈ Irr(S̃p(ni)), such that τ ∼= τt−1, τ0 is a discrete series
and for i ∈ {1, 2, . . . , t − 1} we have τi ↪→ δ(xi, χV,ψρi)

mi o τi−1 where ρi ∈
Irr(GL(nρi , F )) is a cuspidal representation, xi is a non-negative half-integer,
and mi is a positive integer such that µ∗(τi−1) does not contain an irreducible
constituent of the form δ(xi, χV,ψρi)⊗ π. Set y = r−ϵ(τ0)− n0 +

1
2
+ t−ϵ.

If µ∗(τ) does not contain an irreducible constituent of the form δ(y −
1, χV,ψ1F×)⊗ π, then rϵ(τ) = n− n0 + rϵ(τ0) and r

−ϵ(τ) = n− n0 + r−ϵ(τ0).
If some irreducible constituent of the form δ(y − 1, χV,ψ1F×)⊗ π appears

in µ∗(τ), let us denote by m the largest integer such that µ∗(τ) contains an
irreducible constituent of the form δ(y − 1, χV,ψ1F×)m ⊗ π. Then there is an
i ∈ {1, 2, . . . , t− 1} such that (xi, ρi,mi) = (y − 1, 1F× ,m). We can assume
i = 1. There are two possibilities:

(i) Suppose that the induced representation δ(y−1, χV,ψ1F×)moτ0 is a direct
sum of mutually isomorphic tempered representations. Then rϵ(τ) =
n− n0 + rϵ(τ0) and r

−ϵ(τ) = n− n0 + r−ϵ(τ0).

(ii) Suppose that the induced representation δ(y−1, χV,ψ1F×)moτ0 is a direct
sum of copies of two non-isomorphic tempered representations. If µ∗(τ1)
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contains an irreducible constituent of the form (νy−1χV,ψ1F×)2m ⊗ π,
then rϵ(τ) = n− n0 + rϵ(τ0) and r

−ϵ(τ) = n− n0 + r−ϵ(τ0). Otherwise,
rϵ(τ) = n− n0 + rϵ(τ0)− 1 and r−ϵ(τ) = n− n0 + r−ϵ(τ0) + 1.

We divide the proof of Theorem 5.2 in a sequence of propositions. The
conservation relation shows that it is enough to determine one of the first
occurrence indices. In each case, we determine the larger one.

Proposition 5.3. Suppose that µ∗(τ) does not contain an irreducible con-
stituent of the form δ(y − 1, χV,ψ1F×)⊗ π. Then r−ϵ(τi) = ni − n0 + r−ϵ(τ0)
for i = 1, 2, . . . , t− 1.

Proof. The proof is similar to that of [13, Theorem 4.1]. Let us first consider
the case i = 1 and let z be such that Θ−ϵ(τ1, z) ̸= 0. Proposition 3.3 gives

θ−ϵ(τ1, z) ↪→ δ(xi, ρi)
mi o θ−ϵ(τ0, z − n1 + n0).

If z ̸= n1−n0+r
−ϵ(τ0), Lemma 3.2 implies θ−ϵ(τ0, z−n1+n0) ↪→ νn1−z+ 1

2
−t−ϵ1F×o

θ−ϵ(τ0, z−n1+n0−1) and, if z > n1−n0+r
−ϵ(τ0)+1, θ−ϵ(τ0, z−n1+n0) ↪→

νn1−z+ 1
2
−t−ϵ1F× × νn1−z+ 3

2
−t−ϵ1F× o θ−ϵ(τ0, z − n1 + n0 − 2).

If (x1, ρ1) ̸= (−(n1 − z + 3
2
− t−ϵ), 1F×) or z = n1 − n0 + r−ϵ(τ0) + 1 we

have

δ(x1, ρ1)
m1 × νn1−z+ 1

2
−t−ϵ1F× ∼= νn1−z+ 1

2
−t−ϵ1F× × δ(x1, ρ1)

m1

(note that (x1, ρ1) ̸= (y − 1, 1F×) by the assumption of the proposition).
Otherwise, we have

θ−ϵ(τ1, z) ↪→ δ(x1, 1F×)m1 × ν−x1−11F× × ν−x11F× o θ−ϵ(τ0, z − n1 + n0 − 2).

Assume that θ−ϵ(τ1, z) is contained in the kernel of the intertwining operator

δ(x1, 1F×)m1 × ν−x1−11F× × ν−x11F× o θ−ϵ(τ0, z − n1 + n0 − 2) →
ν−x1−11F× × δ(x1, 1F×)m1 × ν−x11F× o θ−ϵ(τ0, z − n1 + n0 − 2).

Then θ−ϵ(τ1, z) is a subrepresentation of

δ([ν−x1−11F× , νx11F× ])× δ(x1, 1F×)m1−1 × ν−x11F× o θ−ϵ(τ0, z−n1 +n0 − 2),

which is isomorphic to

ν−x11F× × δ([ν−x1−11F× , νx11F× ])× δ(x1, 1F×)m1−1 o θ−ϵ(τ0, z−n1 +n0 − 2),
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and Proposition 3.5 can be used to obtain a contradiction with the tempered-
ness of τ1.

Consequently, RP1(Θ
−ϵ(τ1, z))(ν

n1−z+ 1
2
−t−ϵ1F×) ̸= 0 and, since n1 − z +

1
2
− t−ϵ < 0, we obtain Θ−ϵ(τ1, z − 1) ̸= 0.
Repeating the same procedure, we get Θ−ϵ(τ1, n1−n0+r

−ϵ(τ0)) ̸= 0. Also,
θ−ϵ(τ1, ni−n0+r

−ϵ(τ0)) is a subrepresentation of δ(xi, ρi)
mioθ−ϵ(τ0, r−ϵ(τ0)).

By Theorem 4.3, this representation is tempered, and the structural formula
for µ∗ gives RP1(Θ

−ϵ(τ1, z))(ν
−y+11F×) = 0. Consequently, r−ϵ(τ1) = n1 −

n0 + r−ϵ(τ0).
Let us now assume that r−ϵ(τi) = ni − n0 + r−ϵ(τ0) for all i < j. Since

τi is tempered, this also gives θ−ϵ(τi, r + 1) ↪→ ν−(mr+1−ni−1)1F× o θ−ϵ(τi, r)
for r ≥ r−ϵ(τi). Now it can be proved that r−ϵ(τj) equals nj − n0 + r−ϵ(τ0)
following the same lines as in the case j = 1.

This ends the proof.

In the rest of this section we assume that an irreducible constituent of
the form δ(y − 1, χV,ψ1F×) ⊗ π appears in µ∗(τ), and we denote by m the
largest integer such that µ∗(τ) contains an irreducible constituent of the
form δ(y − 1, χV,ψ1F×)m ⊗ π. We may, and we will, assume (x1, ρ1,m1) =
(y − 1, 1F× ,m).

Proposition 5.4. Suppose that the induced representation δ(y−1, χV,ψ1F×)mo
τ0 is a direct sum of mutually isomorphic tempered representations. Then
r−ϵ(τ1) = n1 − n0 + r−ϵ(τ0).

Proof. In this case, δ(y − 1, χV χV ′1F×)m o θϵ(τ0, n0 − tϵ) is irreducible. Let
m′ denote the largest integer such that µ∗(τ0) contains an irreducible con-
stituent of the form (νy−1χV,ψ1F×)m

′ ⊗π. Propositions 3.4 and 3.5 show that
µ∗(θ−ϵ(τ0, r

−ϵ(τ0))) contains an irreducible constituent of the form (νy−11F×)m
′⊗

π1 and does not contain an irreducible constituent of the form (νy−11F×)m
′+1⊗

π2. Furthermore, the structural formula directly implies that µ∗(τ1) contains
an irreducible constituent of the form (νy−1χV,ψ1F×)2m+m′ ⊗ π3.

Following the same steps as in the proof of the previous proposition, we
deduce r−ϵ(τ1) ∈ {n1 − n0 + r−ϵ(τ0), n1 − n0 + r−ϵ(τ0) + 1}. Proposition 3.4
shows that

µ∗(θ−ϵ(τ1, n1 − n0 + r−ϵ(τ0) + 1)) ≥ (νy−11F×)2m+m′ ⊗ π4
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for some irreducible representation π4. If r
−ϵ(τ1) equals n1−n0+ r

−ϵ(τ0)+1,
then θ−ϵ(τ1, n1 − n0 + r−ϵ(τ0) + 1) is a subrepresentation of

δ(y − 1, 1F×)m−1 × δ([ν−y1F× , νy−11F× ])o θ−ϵ(τ0, r
−ϵ(τ0))

and it follows at once that no representation of the form (νy−1χV,ψ1F×)2m+m′⊗
π5 appears in µ

∗(θ−ϵ(τ1, n1−n0+ r
−ϵ(τ0)+1)). Consequently, r−ϵ(τ1) equals

n1 − n0 + r−ϵ(τ0) and the proposition is proved.

The remaining possibility is treated in the following proposition.

Proposition 5.5. Suppose that the induced representation δ(y−1, χV,ψ1F×)mo
τ0 is a direct sum of copies of two non-isomorphic tempered representations.
If µ∗(τ1) contains an irreducible constituent of the form (νy−1χV,ψ1F×)2m⊗π,
then r−ϵ(τ1) = n1 − n0 + r−ϵ(τ0). Otherwise r

−ϵ(τ1) = n1 − n0 + r−ϵ(τ0) + 1.

Proof. In this case, δ(y − 1, χV χV ′1F×)m o θϵ(τ0, n0 − tϵ) reduces and it fol-
lows that (2y − 1, χV χV ′1F×) ̸∈ Jord(θϵ(τ0, n0 − tϵ)). Corollary 4.4 implies
that the representation θ−ϵ(τ0, r

−ϵ(τ0)) is a discrete series representation.
Also, Lemma 4.5 implies that RP̃1

(τ0)(ν
y−1χV,ψ1F×) = 0 and it follows from

Proposition 3.4 that RP1(θ
−ϵ(τ0, r

−ϵ(τ0))(ν
y−11F×) = 0.

Thus, µ∗(δ(y−1, χV,ψ1F×)moτ0) contains an irreducible constituent of the
form (νy−1χV,ψ1F×)2m⊗π1, and it does not contain an irreducible constituent
of the form (νy−1χV,ψ1F×)2m+1 ⊗ π2.

Let us denote by τa and τb the two not isomorphic irreducible subrep-
resentations of δ(y − 1, χV,ψ1F×)m o τ0. There is some i ∈ {a, b} such that
µ∗(τi) contains an irreducible constituent of the form (νy−1χV,ψ1F×)2m ⊗ π1.
There is no loss of generality in assuming i = a.

In the same way as in the proof of Proposition 5.3 we obtain r−ϵ(τa),
r−ϵ(τb) ∈ {n1−n0+r

−ϵ(τ0), n1−n0+r
−ϵ(τ0)+1}. The assumption r−ϵ(τa) =

n1 − n0 + r−ϵ(τ0) + 1 implies

θ−ϵ(τa, r
−ϵ(τa)) ↪→ δ(y− 1, 1F×)m−1× δ([ν−y1F× , νy−11F× ])o θ−ϵ(τ0, r

−ϵ(τ0)),

and, since RP1(θ
−ϵ(τ0, r

−ϵ(τ0))(ν
y−11F×) = 0, it can be seen that this is

impossible in the same way as in the proof of Proposition 5.4. Consequently,
r−ϵ(τa) = n1 − n0 + r−ϵ(τ0). Also, θ

−ϵ(τa, r
−ϵ(τa)) is a subrepresentation of

δ(y − 1, 1F×)m o θ−ϵ(τ0, r
−ϵ(τ0)),

which is irreducible by Corollary 4.4 and [19, Lemma 2.3].
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We will now prove that r−ϵ(τb) equals n1 − n0 + r−ϵ(τ0) + 1. Suppose, on
the contrary, that r−ϵ(τb) = n1 − n0 + r−ϵ(τ0). Then θ

−ϵ(τb, r
−ϵ(τb)) is also a

subrepresentation of δ(y − 1, 1F×)m o θ−ϵ(τ0, r
−ϵ(τ0)) and

θ−ϵ(τa, n1 − n0 + r−ϵ(τ0)) ∼= θ−ϵ(τb, n1 − n0 + r−ϵ(τ0)),

which is impossible since τa and τb are not isomorphic. Consequently, r−ϵ(τb) =
n1 − n0 + r−ϵ(τ0) + 1 and θ−ϵ(τb, r

−ϵ(τb)) is a subrepresentation of

δ(y − 1, 1F×)m−1 × δ([ν−y1F× , νy−11F× ])o θ−ϵ(τ0, r
−ϵ(τ0)).

Now the fact that RP1(θ
−ϵ(τ0, r

−ϵ(τ0))(ν
y−11F×) = 0, the structural formula

for µ∗ and Proposition 3.4 can be used to show that µ∗(τb) does not contain
an irreducible constituent of the form (νy−1χV,ψ1F×)2m⊗ π1. This completes
the proof.

The following proposition completes the proof of Theorem 5.2. It can
be proved in an analogous way as Proposition 5.3, details being left to the
reader.

Proposition 5.6. Suppose that µ∗(τ) contains an irreducible constituent of
the form δ(y − 1, χV,ψ1F×) ⊗ π and denote by m the largest integer such
that µ∗(τ) contains δ(y − 1, χV,ψ1F×)m ⊗ π for an irreducible π. We assume
(x1, ρ1,m1) = (y − 1, 1F× ,m). Then r−ϵ(τi) = ni − n1 + r−ϵ(τ1) for i =
2, 3, . . . , t− 1.
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